Great monarch butterfly migration mystery solved


Source: BBC

By Victoria Gill, Science reporter, BBC News

Scientists have built a model circuit that solves the mystery of one of nature’s most famous journeys – the great migration of monarch butterflies from Canada to Mexico.

Monarchs are the only insects to migrate such a vast distance.

So, by teaming up with biologists, mathematicians set out to recreate the internal compass they use to navigate on that journey.

The findings are published in the journal Cell Reports.

Lead researcher Prof Eli Shlizerman, from the University of Washington, explained that, as a mathematician, he wants to know how neurobiological systems are wired and what rules we can learn from them.

“Monarch butterflies [complete their journey] in such an optimal, predetermined way,” he told BBC News.

“They end up in a particular location in Central Mexico after two months of flight, saving energy and only using a few cues.”

Prof Shlizerman worked with biologist colleagues, including Steven Reppert at the University of Massachusetts, to record directly from neurons in the butterflies’ antennae and eyes.

“We identified that the input cues depend entirely on the Sun,” explained Prof Shlizerman.

“One is the horizontal position of the Sun and the other is keeping the time of day.

“This gives [the insects] an internal Sun compass for travelling southerly throughout the day.”

Having worked out the inputs for this internal compass, Prof Shlizerman then created a model system to simulate it.

This consisted of two control mechanisms – one based on the timekeeping “clock” neurons in the butterflies’ antennae and the other from what are called azimuth neurons in their eyes. These monitor the position of the Sun.

“The circuit gets those two signals then matches them, according to how it’s wired, to control signals that tell the system if a correction is needed to stay on the correct course,” explained Prof Shlizerman.

“For me this is very exciting – it shows how a behaviour is produced by the integration of signals,” he added.

Read more


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.